岩棉板条厂家
免费服务热线

Free service

hotline

010-00000000
岩棉板条厂家
热门搜索:
产品介绍
当前位置:首页 > 产品介绍

当对于工程机械液力变矩器传动损失的研究

发布时间:2021-09-14 22:15:31 阅读: 来源:岩棉板条厂家
当对于工程机械液力变矩器传动损失的研究

对于工程机械液力变矩器传动损失的研究

摘 要:液力变矩器在现代工程机械传动中被广泛采用,它不仅可以传递力矩而且可以 改变力矩的大小。对于现代大型工程机械,其能耗非常大,但其效率往往比较低。因 此,我们总希望能够尽量地提高工程机械的效率。因此,对于液压传动能量损失的 研究就显得尤为重要了。作者从流体力学的角度对现代工程机械中液力变矩器的损 失进行了研究。

关键词:工程机械 液力变矩器 液力损失 机械损失 容积损失

1 前言

在工程机械传动系中,一般采用液力机械式传动,它能够满足现代工程机械要求的牵引力大、速 度低、牵引力和行驶速度变化范围大、进退自如等特点。而在液力机械式传动中加装了液力变矩器, 则具有自动变矩、变速,防振隔振,良好的启动性能,和限矩保护的作用,更能适应现代工程机械的 需要。

流体在变矩器中沿泵轮、涡轮、导轮组成的循环圆流道流动一周,从泵轮获得能量、并将能量传 给涡轮。当导轮不动的时候,流体经过导轮时没有能量交换。但流体在循环圆中流动具有黏性,必然 有摩擦损失,且损失大小与其速度有直接关系。工作轮流道为非原型断面且有弯曲、扩散等,因此, 其摩擦损失比圆管流道要大得多。另外在非设计工况,在涡轮及导轮进口处要产生冲击损失。因此,一般液力变矩器的效率最大为85%~92% [1]。而对于一般的工程机械,由于其负载大、作业条件恶劣、 零件磨损严重,其效率普遍比较低。因此,对于液力变矩器能量损失的研究具有很强的现实意义。

2 液力变矩器的工作原理

液力变矩器的基本结构如图1所示。它主要由三个具有弯曲( 空间曲面)叶片的工作轮组成,即可旋转的泵轮4和涡轮3,以及固定不动的导轮5。各 工作轮常用高强度的轻合金精密铸造而成。泵轮4一般与变矩器壳2连成一体,用螺栓固定在发动机 曲轴1的连接盘上。涡轮3经从动轴7传出动力。导轮5固定在不动的套筒6上。所有的工作轮在变矩 器装配完成后,共同形成环行内腔。

液力变矩器工作时,储存于环行内腔的工作液除随变矩器作圆周运动( 即牵连运动)之外,还在循环圆沿箭头图1中所示方向作循环流动( 即相对运动)。液体离开泵轮时,以一定的绝对速度进入涡轮、冲击涡轮叶片,将力矩从泵轮传递给涡轮。

1.发动机曲轴 2.变矩器壳 3.涡轮

4.泵轮 5.导轮 6.固定套筒 7.从动轮

图1 液力变矩器结构原理

3 液力变矩器的能量损失

综上所述,液力传动的过程中,必然伴随着能量的损失。液力变矩器的能量损失一般分为三种: 液力损失、机械损失和容积损失。

3.1 液力损失

液力损失分为两类:一类为摩擦阻力损失,另一类为局部阻力损失。

1.摩擦阻力损失

工作液体在循环圆内流动的过程中,各流层间和液体与流道壁间有一定的相对速度,由于液体有 粘性,就会出现摩擦阻力,流速慢的流层对流速快的流层起阻碍作用。单位质量的液体为了克服这种 阻力而损失的能量叫做摩擦阻力损失。在文献[2]中,通常以液流的速度头v2/2g的百分数来表示摩擦阻 力损失的大小。液力传动中,液体质点相对叶轮的运动是相对运动,故摩擦阻力损失以相对速度ω的速度头表示。

式中:L—流道的长度,m;λ—摩擦阻力系数;

Rn—流道的水力半径,其数值等于过流断面面 积与湿周之比,m。

由于泵轮、涡轮和导轮在传动过程中均存在摩擦现象,所以,摩擦损失的总和应该是三者的总和, 即:

Σhm=hmB+hmT+h mD (2)

2.局部阻力损失

(1)冲击损失

一般情况下,液流在叶轮进口处并不与叶片骨线进口需要经过球压实验、炽热丝实验、水平燃烧实验等6种实验测试方向一致。这样就会引起旋涡损失以及脱流区 使流道收缩而引起的附加摩擦损失。进口的相对速度ω 0与骨线间的夹角Δβc为冲角,见图2。 Δβc有正负之别。ω0流向叶片工作面时, Δβc正;ω0流向叶片背面时, Δβc负。叶片工作面压力高、背面的压力低。

a 泵轮进口冲角 b 涡轮进口冲角

图2 进口冲角

相对速度ω0与叶片骨线偏离时,往往会在叶 片的表面形成脱流区,使流道在脱流区收缩,冲击损失与冲击损失速度和冲击损失系数有关,冲击损失速度如图3所示。

图3 冲击损失速度

式中:hc—冲击损失能头,m;

φc—冲击损失系数;

ωc—冲击损失速度,m/s

同理,泵轮、涡轮和导轮同样有冲击损失,所以中的冲击损失为:

Σhc=hcB+hcT+h cD (3)

(2)突然扩大和突然收缩的损失

叶轮进口前无叶将出现问责无据、追责无力的为难局面片区的过流断面大于进口后的过流断面。叶轮出口过流断面小于出口后无叶片区的过流断面。在叶轮进口处有突然收缩的损失, 而在出口处有突然扩大的损失。这是叶片排挤而引起的。这些损失根据文献 [3]的公式计算:

式中:htk—突然扩大的单位能量损失,m;

hts—突然缩小的单位能量损失,m;

ξts—突然缩小的损失系数,=0.4~0.5;

vm3—叶轮刚出口的轴面速度,m/s;

vm0—叶轮刚要进口的轴面速度,m/s。

因此,总的扩大和缩小的能量损失为:

Σht=htK+htS (6)

(3)扩散损失

对液力传动来说,存在扩散管状的流道,如泵轮内的流道,涡轮内流道的前半段,综合式液力变 矩器导轮前半段流道等。扩散管的损失计算如下:

式中:vm1—扩散管道起始断面的轴面速度;

vm2—扩散管末端断面的轴面速度;

φk—扩散损失系数。

由上可知,对于总的液力损失为:

Σh=Σhm+Σhc+Σht +Σhk (8)

3.2 机械损失

动力经液力传动传递时伴随着机械损失,这种机械损失包括泵轮轴的轴承和密封的损失,泵轮圆 盘摩擦损失——泵轮外表面与液体的摩擦损失,涡轮圆盘摩擦损失——涡轮外表面与液体的摩擦损 失。所有这些机械损失都要消耗动力机的能量,影响液力传动的效率。

对于轴承和密封的损失,通过提高配合精度、适当地选取润滑油和密封材料,可以把这种在额定 的工况下控制在1%以下[4]。而机械摩擦损失重要 是泵轮、涡轮等旋转件的圆盘摩擦损失。当相对转数较高时,圆盘摩擦损失较大。另外,并非所有的 圆盘摩擦都消耗功率,必须对其进行具体分析。

3.3 容积损失

由于泵轮出口的绝大部分液体流进涡轮,这部分液体再由涡轮流进导轮,然后又回到泵轮,起传 递力的作用。泵轮进口与导轮出口的内环间有比较小的环行间隙,同样的间隙存在与涡轮出口和导轮进口内环间。这种间隙使叶轮互相不接触,使叶轮 之间相互没有机械摩擦。但是,这种环行间隙的两端压力不等,有一部分液体就要通过这些间隙由高 腔流向低腔。泵轮出口的压力高于泵轮进口的压力也高于涡轮出口的压力,故液流由泵轮出口经环行 密封再流到泵轮进口,绕泵轮内环流动。从水泵研究表明,当比转数在100~200时,容积损失所占比 重不足1.5%[4]。与液力损失相比要小得多,故该项 在计算时也可忽略,即认为ηv≈1。

2.3.4 效率分析

当泵轮转速n1不变时,冲击损失主要取决于涡 轮转速n2。变矩器的效率ηPTD应为输出功率与输入 功率之比,即:

显然,当n2=0时,ηPTD=0;当 n2=n20时候,因M2=0,则 ηPTD=0。效率ηPTD随n2 变化的曲线见图4。

图4 液力变矩器效率曲线

变矩器使用过程中,如果工况变化较大,而对设计工况 转速比没什么特殊要求,由于变矩器最高效率只有85%~92%, 当启动变矩系数K0要求较大,则最高效率对应的转速比一般 小于0.6,而当iTB>(iTB)K=1 后,其效率会很快下降。为了在高转速比工况下有较高的效市场对石墨烯的热度可见1斑率,我们可以采 用综合式液力变矩器或闭锁式液力变矩器。

(1)综合式液力变矩器

特点:导轮通过单向离合器装在固定不动的导轮座上,结构布置上泵轮与涡轮对称布置。

当iTB1)时,M D=-MT-MB>0,此时,单向离合器在楔紧力的作用下无转动,故导轮 固定不动,这时是变矩器工况。而当iTB>(i TB)K=1时,MD(iTB)K=1时,比综合式液力变矩器效率高,但由于有鼓风损失, 虽然泵轮与涡轮刚性连接,其效率也不可能达到100%。而且当泵轮与涡轮不对称布置时,循环圆中会有流体流动,这也要消耗一些能量。

图6 单级闭锁变矩器结构简图及原始特性

另外,为了保证液力传动车辆能可靠地利用发动机只动或拖车启动发动机,除了可以利用闭锁式 的液力变矩器外,还可采用:①在内环中带有辅助径向叶片的液力变矩器;②安装液力减速器作辅助 制动装置。

4 工程机械液力损失特性

液力变矩器摩擦阻力损失的机理虽然简单,但数学模型不易得到,定量分析难以实现 [6]。通常工程机械转速较低,摩擦阻力损失相对较小,对工作 效率影响不大,且对不可透变矩器,由于相对流量为常数,所以摩擦阻力损失也是相对常量,即随工 况变化不大。如上所述,一般容积损失也可忽略。因而,液力变矩器冲击损失是影响工程机械效率的 主要因素。

对于某一个具体的叶轮,其冲击损失由式(12)决定。其数学模型为:

式中:i’——为最高效率时传动比。

可见,液力变矩器总的冲击损失在i≤iDH时, 是以纵坐标i=i’为对称的抛物线,在i>iDH时,近 似为常量,如图7所示。当i=i’时,Σhc=0,说明 在泵轮的转速与涡轮转速接近时,无冲击损失;当i=0时,冲击损失最大,这与工程机械的工作情况 相符。

图7 液力损失曲线

5 结论

通过以上对造成液力变矩器能量损失的分析可以得出,造成液力变矩器能量损失的主要因素是液 力损失中的冲击损失,对其特性进行了分析。并指出,当启动变矩系数K 0要求较大时,其效率一般较小,为了在高转速比工况下有较高的效率,可以采 用综合式液力变矩器或闭锁式液力变矩器来提高其功率。通过液力变矩器能量损失的研究,对于从事 工程机械液力传动设计、制造人员有指导意义。

参考文献

[1]唐经世等.工程机械(上册)[M].中国铁道出版社,1996.

[2]郭楚问.工程流体力学[M].中国矿业大学出版社,2002.

[3]张洪流.流体流动与传热[M].化学工业出版社,2002.

[4]李有义.液力传动[M].哈尔滨工业大学出版社,2000.

[5]马文星.液力传动理论与设计[M].化学工业出版社,2004.

[6]藏发可以和用户局域相连接实现数据远程输出业.工程机械液力传动与特性[J].建筑机械化,2001,(4).(end)

铁路弹簧刚性试验机
碳素钢液压万能试验机
塑料管材环刚度试验机
数显液压万能试验机?